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The deformation of a liquid capsule enclosed by a thin shell in a simple shear flow is stud-
ied numerically using an implicit immersed boundary method. We present a thin-shell
model for computing the forces acting on the shell middle surface during the deformation
within the framework of the Kirchhoff–Love theory of thin shells. This thin-shell model
takes full account of finite-deformation kinematics which allows thickness stretching as
well as large deflections and bending strains. For hyperelastic materials, the plane-stress
assumption is used to compute the hydrostatic pressure and the incompressibility condi-
tion yields the thickness strain component and the corresponding change in the thickness.
The stresses developing over the cross-section of the shell are integrated over the thickness
to yield the stress and moment resultants which are then used to compute the forces acting
on the shell middle surface. The immersed boundary method is employed for calculating
the hydrodynamics and fluid–structure interaction effects. The location of the thin shell
is updated implicitly using the Newton–Krylov method. The present numerical technique
has been validated by several examples including an inflation of a spherical shell and defor-
mations of spherical and oblate spheroidal capsules in the shear flow.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Many problems in which a viscous fluid interacts with a deformable boundary are of considerable interest in the study of
fluid mechanics such as blood flow, suspension of liquid droplets in fluid. Understanding the mechanics of the interaction
between the fluid and suspended particles is important in many applications such as chemical engineering, cellular biology
and drug delivery. Much effort has been devoted to study the behavior of liquid capsules enclosed by elastic membrane such
as red-blood cells and synthetic capsules with polymerized interfaces. Experimental and theoretical studies have revealed
complex interaction of different physical properties of the capsule such as capsule shape, internal fluid viscosity and mem-
brane material that affect the deformations of the suspended capsule in the flow.

Several experimental studies have been performed for synthetic capsules in simple shear flow [6,47,48]. Laboratory
observations of red-blood cells (RBC) in the shear flow were also reported [1,15,35]. Depending on the shear rate and the
stiffness of the membrane, the capsules or RBCs undergo different types of motion such as tank-treading, tumbling or tran-
sition from tumbling to tank-treading.

Theoretical study of the deformation of spherical capsules suspended in a shear flow was presented in [3,4] for small
capsule deformation. For large deformation, asymptotic theories are not applicable and numerical simulations have been
. All rights reserved.

Le), smatz@nus.edu.sg (Z. Tan).

http://dx.doi.org/10.1016/j.jcp.2010.01.042
mailto:ledv@ihpc.a-star.edu.sg
mailto:smatz@nus.edu.sg
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


4098 D.-V. Le, Z. Tan / Journal of Computational Physics 229 (2010) 4097–4116
employed by a number of authors with different membrane models. In [10,13,24,43], the forces generated in the capsule
membrane during the deformation are obtained using a finite element model [7,37]. Subsequently, a zero-thickness elastic
shell model has been developed in [33] for computing the elastic tensions at the nodes of an unstructured quadratic trian-
gular mesh describing the capsule membrane. This model was later used in [23,32] for studying capsule membrane with
bending rigidity. Bending moments developed in [32] were expressed in terms of mean and Gaussian curvature multiplied
by a corresponding bending modulus that is generally distinct from the modulus of elasticity. This constitutive law describes
the mechanism that biological membranes consisting of lipid bilayers exhibit the bending moments due to a preferred three-
dimensional unstressed configuration. These membrane models have been considered with different membrane constitutive
laws. In most cases, the capsule membrane are considered as hyperelastic materials with neo-Hookean or Skalak strain en-
ergy functions [13,24,33,43]. The effect of the membrane constitutive laws on the deformation of capsules has been studied
in [21]. Other forms of constitutive law have also been used such as the Yeoh form in [23] and the Hooke’s law with 2d-Lamé
coefficients in [18].

To handle the fluid–structure interaction, several methods have been employed to solve for the viscous incompressible
fluid flow in conjunction with the membrane models. The boundary-element method (BEM) has been applied intensively
to study the deformation of liquid capsules in Stokes flow [21,32,33]. A quadratic triangular mesh is used in [33] to discretize
the membrane and the force is averaged over an element in the boundary integral. This method was plagued by numerical
instabilities for high and low dimensionless shear rates due to the degradation of the grid. In [21], the boundary-element
method is used in conjunction with surface interpolation by means of bi-cubic B-splines which allows accurate evaluation
of high-order derivatives of the geometric quantities of the surface such as curvature. Recently, Kessler et al. [18] proposed
a global spectral method in which the shape of the capsule is expanded into a set of smooth basis functions for Stokes flow.
This method has the advantages that the resulting capsule shape is globally smooth and the derivatives of the basis functions
are analytically known, which reduces the discretization error, especially in high-order derivatives such as the curvature. As
an alternative to the boundary-element method, the immersed boundary (IB) method [30] has been employed to solve for the
deformation of the elastic capsules in shear flow [13,24]. In addition, the immersed boundary method was also used with the
lattice Boltzmann method (LBM) [43] to improve the efficiency by using multi-block-strategy. Recently, an implicit immersed
boundary method has been proposed in [23] to improve the time step in advancing the location of the membrane with large
elastic modulus. The implicit method has proven to be an efficient method in dealing with multiple liquid capsules in the flow.

In the present paper, we extent our implicit immersed boundary method [23] for simulating the deformation of liquid
capsules immersed in the fluid. In [23], the zero-thickness shell model [33] was used for computing the forces generated
on the membrane surface during deformation. As in [33], the implicit IB method also suffers from numerical instabilities
for high and low deformations due to the grid degradation which leads to limit the extent of the simulation. In order to im-
prove the simulation time, we employ the thin-shell model presented in [8,9] for computing stress and moment resultants.
We note that in the present work, the liquid capsule is enclosed by a thin shell with finite thickness that exhibits bending
resistance and the mechanism for generating the bending moments is different from that in [32]. Here, stresses developing
over the cross-section of shells are integrated over the thickness to yield the stress resultants and tangential bending mo-
ments. In [8,9], the thin-shell model was proposed to compute the displacements of the shell nodal points on a subdivision
surface with given loads. Here, we employed this thin-shell model to compute the stress and moment resultants with the
known displacements on a quadratic triangular mesh. We also suggest a way to compute the total forces generated on each
element and at each node of the mesh during the deformation.

Our goal in this work is twofold. First, we proposed a method for calculating the forces generated on the capsule surface
by employing the thin-shell model [8,9] for studying non-linear deformation of liquid capsule enclosed by thin shell. Second,
we investigate large deformations of capsules with various unstressed shapes. We also study different motions of non-spher-
ical capsules such as tank-treading, tumbling and transition from tank-treading to tumbling under a broad range of dimen-
sionless shear rate and viscosity ratio.

The remainder of this paper is organized as follow. In Section 2, we describe the governing equations for the fluid flow and
introduce the shell kinematics relevant to large deformations. We begin with constitutive models and the weak form of static
equilibrium equations for Kirchhoff–Love shell theory. In Section 3, we briefly summarize the immersed boundary algorithm,
the spatial discretization of the thin shell and the method for advancing the membrane evolution in time. In Section 4, some
numerical examples are presented to demonstrate the performance of the method and finally, some conclusions are given in
Section 5.
2. Formulation

2.1. Governing equations

In a three-dimensional bounded fluid domain XF that contains an enclosed thin shell XSðtÞ, we consider the incompress-
ible Navier–Stokes equations formulated in primitive variables, written as
qðut þ ðu � rÞuÞ ¼ �rpþr � ðl½ruþ ðruÞT �Þ þ f ; ð1Þ
r � u ¼ 0; ð2Þ
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where u ¼ ðu;v ;wÞT is the fluid velocity, p is the pressure, q and l are density and viscosity of the fluid, respectively. For
simplicity, we assume that q is constant over the whole domain. The viscosity of the fluid can be written as
lðx; tÞ ¼ le½1þ ðk� 1ÞWðx; tÞ�; ð3Þ
where le is the viscosity of the external flow, k is the ratio of the internal to the surrounding fluid viscosities, x ¼ ðx; y; zÞ is
spatial position and Wðx; tÞ is an indicator function which is 1 in the interior of the shell and 0 outside.

The effect of the thin shell XSðtÞ immersed in the fluid results in a singular force f which has the form
f ðx; tÞ ¼
Z

XSðtÞ
Fsðn1; n2; n3; tÞdðx� Xðn1; n2; n3; tÞÞdXS; ð4Þ
where ðn1; n2; n3Þ are curvilinear coordinates attached to the shell at a material point, Xðn1; n2; n3; tÞ is the position at time t in
Cartesian coordinates of the material point whose label is ðn1; n2; n3Þ and Fsðn1; n2; n3; tÞ is the force strength. Here, dðxÞ is the
three-dimensional Dirac function. The motion of the shell can be determined by integrating the equation
dXðn1; n2; n3; tÞ
dt

¼
Z

XF

uðx; tÞdðx� Xðn1; n2; n3; tÞÞdx: ð5Þ
2.2. Thin shell formulation

In this section we summarize the basic shell description and kinematic results underlying the shell model. Further details
can be found in [8,9,38,39].

2.2.1. Kinematic description of the shell
In describing a shell, we follow Simo and Fox [38] and adopt the Kirchhoff–Love hypothesis, which requires that a fiber

which is initially normal to the middle surface of the shell remains normal to the deformed middle surface of the shell. Con-
sider a shell body whose undeformed and deformed middle surface are denoted by C and C, respectively. The position of a
material point X associated with the coordinates ðn1; n2; n3Þ within the shell in its undeformed configuration is given by
Xðn1; n2; n3Þ ¼ �uðn1; n2Þ þ n3 �a3ðn1; n2Þ; ð6Þ
where �uðn1; n2Þ defines a parametric representation of the undeformed shell middle surface and �a3ðn1; n2Þ is the unit normal
vector to the middle surface. The pair ðn1; n2Þ is a system of surface curvilinear coordinates and n3 is the thickness coordinate
limited by ��h=2 6 n3

6
�h=2, where �h is the thickness of the undeformed shell. The position of a material point X associated

with the coordinates ðn1; n2; n3Þ within the shell in its deformed configuration is given by
Xðn1; n2; n3Þ ¼ uðn1; n2Þ þ n3gðn1; n2Þa3ðn1; n2Þ; ð7Þ
where u and a3 define the deformed shell middle surface and its unit normal vector, respectively. The thickness stretch g is
defined as
g ¼ hd

�h
; ð8Þ
where hd is the thickness of the deformed shell. The surface basis vectors corresponding to �u and u are
�aa ¼ �u;a; aa ¼ u;a; ð9Þ
respectively, where here and henceforth a comma is used to denote partial differentiation and Greek indices take the values
1 and 2.

The unit normal vectors to the shell middle surfaces in the undeformed and deformed configurations are
�a3 ¼
�a1 � �a2

j�a1 � �a2j
; a3 ¼

a1 � a2

ja1 � a2j
: ð10Þ
The local covariant basis vectors on the undeformed and deformed configurations are defined as
�ga ¼
@X
@na ¼ �aa þ n3�a3;a; ð11Þ

�g3 ¼
@X
@n3 ¼ �a3; ð12Þ

ga ¼
@X
@na ¼ aa þ n3ðga3Þ;a; ð13Þ

g3 ¼
@X
@n3 ¼ ga3: ð14Þ
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The corresponding covariant components of the metric tensors in both configurations are
�gij ¼ �gi � �gj; gij ¼ gi � gj; ð15Þ
where here and henceforth lowercase Latin indices range from 1 to 3. Contravariant basis vectors �gi and gi are defined such
that
�gi � �gj ¼ dj
i; gi � gj ¼ dj

i; ð16Þ
where dj
i is the Kronecker delta. The corresponding contravariant metric tensors which will be required later are defined as
�gij ¼ �gi � �gj; gij ¼ gi � gj: ð17Þ
In term of the co- and contravariant basis vectors, the deformation gradient tensor F for the shell body may be expressed in
the form [25]
F ¼ @X
@X
¼ @X
@ni
� �gi ¼ gi � �gi; ð18Þ
where here and henceforth summation over the repeated index i is implied in the range from 1 to 3. Using the local covariant
basis vectors expressed in Eqs. (13) and (14) the deformation gradient can be rewritten as
F ¼ aa � �ga þ ga3 � �g3 þ n3ðga3Þ;a � �ga; ð19Þ
where the derivative of the shell director can be computed from (10) as
a3;a ¼
ða1;a � a2 þ a1 � a2;aÞ � a3½ða1;a � a2 þ a1 � a2;aÞ � a3�

ja1 � a2j
: ð20Þ
The right Cauchy–Green strain tensor is then given in terms of the deformation gradient tensor F as
C ¼ FTF ¼ gij�g
i � �gj: ð21Þ
2.2.2. Constitutive models
To complete the mathematical formulation for the shell, we introduce constitutive equations that express the stress ten-

sor in terms of the deformation tensors. We follow the procedure presented in [8] and consider the incompressible hyper-
elastic materials. For the incompressible hyperelastic material, such as Mooney elastic solids or biological membranes, we
consider the Mooney–Rivlin strain energy function per unit undeformed volume
WðCÞ ¼ c1ðIC
1 � 3Þ þ c2ðIC

2 � 3Þ; ð22Þ
where c1 and c2 are material constants, and IC
1 ¼ trC and IC

2 ¼ ððtrCÞ2 � trC2Þ=2 are the first and second invariants of the right
Cauchy–Green tensor C, respectively. When c2 ¼ 0, the second term in (22) vanishes and Eq. (22) is known as neo-Hookean
strain energy function,
WðCÞ ¼ E
6
ðIC

1 � 3Þ; ð23Þ
where E is the Young’s modulus.
The Kirchhoff stress tensor can be computed from the strain energy function as
s ¼ F � @W
@C
� FT � psI; ð24Þ
where ps denotes the hydrostatic pressure and I is identity tensor. The Kirchhoff stress tensor can be expressed in an alter-
native form as
s ¼ sijgi � gj ð25Þ
with the components sij derived from the Doyle–Ericksen relation [25] as
sij ¼ 2
@W
@gij
� psg

ij: ð26Þ
For Mooney–Rivlin hyperelastic materials the Kirchhoff stress components can be explicitly written as
sij ¼ 2ðc1 þ c2�gklgklÞ�gij � 2c2�gikgkl�g
lj � psg

ij; ð27Þ
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which is derived from the relations
@IC
1

@gij
¼ �gij; ð28Þ

@IC
2

@gij
¼ �gklgkl�g

ij � �gikgkl�g
lj: ð29Þ
Since this work deals with thin shells only, we may assume the plane stress state by requiring that
s33 ¼ 2
@W
@g33

¼ 0 ð30Þ
across the thickness of the shell [2,8,12]. The hydrostatic pressure ps can be computed from the plane-stress assumption as
ps ¼
2ðc1 þ c2�gklgklÞ�g33 � 2c2�g3kgkl�g

l3

g33 : ð31Þ
The thickness strain can be computed from the incompressibility condition
det F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ
detð�gÞ

s
¼ 1 ð32Þ
with the result
g33 ¼
detð�gÞ

g11g22 � g12g21
: ð33Þ
Here, we have set ga3 and g3a to zero by virtue of the assumed shell kinematics. The thickness stretch is then eval-
uated as
g ¼ 1
�h

Z �h=2

��h=2

ffiffiffiffiffiffiffi
g33
p

dn3: ð34Þ
To model for the red-blood cell (RBC) membrane, we can use the strain energy function proposed by Skalak et al. [40]
W ¼ E
4

1
2

I2
1 þ I1 � I2

� �
þ c11E

8
I2
2; ð35Þ
where c11 is a large constant represents the ratio between the area dilation modulus and the shear modulus, and the invari-
ants I1 and I2 are functions of the invariants IC

1 ; IC
2 and g33 as
I1 ¼ IC
1 � 2� g33; ð36Þ

I2 ¼ IC
2 � 1� ðIC

1 � g33Þg33: ð37Þ
2.2.3. Weak form of equilibrium
To derive the equilibrium equations of the shell body in weak form, we start from the fact that the potential energy of the

shell body is stationary at equilibrium, i.e.
dP ¼ dPint þ dPext ¼ 0; ð38Þ
where dPext is the variation of the potential energy of the external forces. The variation of the potential of the internal forces
with an arbitrary variation dF can be expressed as
dPint ¼
Z

XS

@W
@F

: dFdXS ¼
Z

XS

P : dFdXS; ð39Þ
where XS is the undeformed shell body and P is the first Piola–Kirchhoff stress tensor. Substitute Eq. (19) into (39) we have
the expression for the internal virtual work
dPint ¼
Z

XS

P : ½daa � �ga þ gda3 � �g3 þ n3ðgda3Þ;a � �ga�dXS þ
Z

XS

P : ½dga3 � �g3 þ n3ðdga3Þ;a � �ga�dXS: ð40Þ
By recalling the relation P ¼ sF�T and noting that s � gi ¼ P � �gi [38], the internal virtual work expression can be rewritten as
dPint ¼
Z

XS

s : ½daa � ga þ gda3 � g3 þ n3ðgda3Þ;a � ga�dXS þ
Z

XS

s : ½dga3 � g3 þ n3ðdga3Þ;a � ga�dXS: ð41Þ
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Since the variations du and dg are independent, Eq. (38) can be decoupled into the equations
Z
C

Z �h=2

��h=2
s : ½daa � ga þ gda3 � g3 þ n3ðgda3Þ;a � ga��mdn3 dCþ dPext ¼ 0; ð42Þ

Z
C

Z �h=2

��h=2
s : ½dga3 � g3 þ n3ðdga3Þ;a � ga��mdn3 dC ¼ 0; ð43Þ
where
�m ¼ jð
�g1 � �g2Þ � �g3j
jð�a1 � �a2Þ � �a3j

ð44Þ
accounts for the curvature of the shell in the volume integration. Eq. (42) is the balance equation of the middle surface of the
shell, whereas Eq. (43) establishes the equilibrium across the shell thickness. The equilibrium across the shell thickness can
be alternatively enforced by using the plane-stress assumption [8]. Following [8,38], we define the stress resultant na, and
the moment resultant ma as
na ¼
Z �h=2

��h=2
s � ga�mdn3; ð45Þ

ma ¼
Z �h=2

��h=2
s � gan3�mdn3: ð46Þ
In addition, one defines the across-the-thickness stress resultant, denoted by l, by the expression
l ¼
Z �h=2

��h=2
s � g3�mdn3: ð47Þ
Then Eq. (42) can be simplified as
Z
C
½na � daa þ gl � da3 þma � ðgda3Þ;a�dCþ dPext ¼ 0: ð48Þ
3. Numerical methods

3.1. Description of the IB and projection methods

The immersed boundary method uses a set of NP control points xI; I ¼ 1; . . . ;NP to represent the middle surface of the
thin shell. The force density is computed at these control points and is distributed to the Cartesian grid points using a dis-
crete representation of the delta function,
f ðx; tÞ ¼
XNP

I¼1

f s
I ðn

1; n2; tÞDhðx� xIðtÞÞDn1Dn2; ð49Þ
where f s
I ðn

1; n2; tÞ is the force per unit area at the control point xI whose label is ðn1; n2Þ. DhðxÞ is a three-dimensional discrete
delta function,
DhðxÞ ¼
1

h3 #
x
h

� �
#

y
h

� �
#

z
h

� �
; ð50Þ
where h is the grid size, x, y and z are the Cartesian components of x and # is a continuous function which is taken from [34]
and given by
#ðdÞ ¼

1
6 ð5� 3jdj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3ð1� jdjÞ2

q
Þ; 0:5 6 jdj 6 1:5;

1
3 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3d2 þ 1

p
Þ; jdj 6 0:5;

0; otherwise:

8>><
>>: ð51Þ
Once the force density is computed at the control points and distributed to the grid, the Navier–Stokes equations with the
forcing terms are then solved for the pressure and velocity field at the Cartesian grid points using the projection method [5].
Our numerical algorithm is based on the pressure increment projection algorithm for the discretization of the Navier–Stokes
equations. The spatial discretization is carried out on a standard marker-and-cell (MAC) staggered grid similar to that de-
scribed in Kim and Moin [19]. Given the velocity un, the pressure pn�1=2 and the forcing term f nþ1=2, we compute the inter-
mediate velocity u� by solving
q
u� � un

Dt
¼ �qðu � ruÞnþ

1
2 � GMACpn�1

2 þr � ðl½ru� þ ðrunÞT �Þ þ f nþ1
2; ð52Þ



D.-V. Le, Z. Tan / Journal of Computational Physics 229 (2010) 4097–4116 4103
where the advective term is extrapolated using the formula,
ðu � ruÞnþ
1
2 ¼ 3

2
ðu � rhuÞn � 1

2
ðu � rhuÞn�1

: ð53Þ
We then compute a pressure increment /nþ1 and update the pressure and velocity field as
r2
h/

nþ1 ¼ q
DMACu�

Dt
; ð54Þ

unþ1 ¼ u� � 1
q

DtGMAC/nþ1; ð55Þ

pnþ1=2 ¼ pn�1=2 þ /nþ1: ð56Þ
In the above expressions, rh and r2
h are the standard central difference operators, GMAC and DMAC are the MAC gradient and

divergence operators, respectively [22]. The velocity field is then interpolated to find the velocity at the control points as,
uðxI; tÞ ¼
X

x

uðx; tÞDhðx� xIðtÞÞh3
; ð57Þ
and this velocity is used to advance the position of the immersed boundary. As the immersed boundary moves and deforms, the
entire fluid viscosity can be updated everywhere by solving the Poisson equation for the indicator function Wðx; tÞ [45,46] as
r2W ¼ r � G; ð58Þ
where G is the gradient of the indicator function defined as
GðxÞ ¼
Z

C
a3dðx�uðn1; n2ÞÞdC: ð59Þ
In the numerical implementation of the projection method, we used the alternating direction implicit (ADI) method
[11,17] to solve Eq. (52) for the intermediate velocity. Eqs. (54) and (58) are solved using a Fast Fourier Transform algorithm
[36].

3.2. Spatial discretization of the thin shell

Next we proceed to discretize the middle surface of the shell into an unstructured mesh of triangular elements. This mesh
may be taken as a basis for introducing an interpolation of the general form
xðn1; n2Þ ¼
XNP

I¼1

NIðn1; n2ÞxI ð60Þ
for the deformed middle surface of the shell. In (60) fNI; I ¼ 1; . . . ;NPg are the shape functions, fxI; I ¼ 1; . . . ;NPg are the
corresponding nodal coordinates, and NP is the total number of nodes in the mesh. Introducing the interpolated parametric
equation (60) into the weak form (48), we have
Z

C
na � @aa

@xI
þ gl � @a3

@xI
þma � g

@a3

@xI

� �
;a

" #
dCþ

Z
C

f sNI dC ¼ 0 ð61Þ
for I ¼ 1; . . . ;NP. The forces at node I can be approximated by averaging as
f s
I ¼

R
C f sNI dCR
C NI dC

: ð62Þ
Introduction of (61) into (62) leads to the expression
f s
I ¼ �

f int
IR

C NI dC
; ð63Þ
where f int
I is the internal force at node I and follows in the form
f int
I ¼

Z
C

na � @aa

@xI
þ gl � @a3

@xI
þma � g

@a3

@xI

� �
;a

" #
dC: ð64Þ
The internal force at node I is the sum of element contributions as in the standard finite element method. The contribution to
the internal force at node I from a generic element is
f int
I ¼

X
k

na � @aa

@xI
þ gl � @a3

@xI
þma � g

@a3

@xI

� �
;a

 !
�j

" #
ðn1

k ;n
2
k Þ

wk; ð65Þ
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where �j ¼ j�a1 � �a2j; ðn1
k ; n

2
kÞ and wk are the coordinate and weight of the kth Gaussian quadrature point, respectively. The

stress and moment resultants at a Gaussian quadrature point are computed by numerical integration of the stresses across
the thickness of the shell using the three-point Simpson rule.

In the present work, the geometry of each element is prescribed parametrically using six nodes, three located
at the vertices and three along the edges, and the basis functions are quadratic functions given by Pozrikidis [31].
With these basic functions, both the numerator and denominator of the right-hand side in (63) are very small at
the vertices of the element. And this may affect the accuracy of the forces f s

I at the vertices. To avoid such a small
denominator, one can use other basis functions such as the box-spline basis functions [42] as using in [8,9] for
thin-shell model with subdivision surfaces. In the present context, we compute the total force f s

En
on an element En

with area Sn as
f s
En
¼ �

X6

I¼1

f int
I Sn

SI
; ð66Þ
where SI is the total area of the elements that contain the local node I. And the force f s
I at the node are the sum of the total

force on the elements sharing the node, weighted by the angles formed by the element edges.

3.3. Advancing the membrane

The position of the immersed boundary, xI , is advanced in time in an implicit manner as
xnþ1
I ¼ xn

I þ Dtðunþ1=2ðxnþ1=2
I ÞÞ; ð67Þ
where unþ1=2 ¼ ðun þ unþ1Þ=2 and xnþ1=2
I ¼ ðxn

I þ xnþ1
I Þ=2. Eq. (67) is implicit and couples the motion of the membrane with

the solution at all grid points. Therefore at each time step, we need to solve a non-linear system of equations for the position
of the control points of the form
gðxnþ1
I Þ ¼ 0; ð68Þ
where
gðxIÞ ¼ xI � xn
I � Dt unþ1=2 xn

I þ xI

2

� �� �
: ð69Þ
This non-linear system of equations is solved by a Jacobian-free Newton–Krylov (JFNK) method [20,23]. More details on the
Jacobian-free Newton–Krylov can be found in [20] and the references therein.

In summary, given the location of the control points xn
I , the velocity field un, the pressure field pn�1=2 and the viscosity ln,

the process of computing the new velocity unþ1, pressure field pnþ1=2, the viscosity lnþ1 and the location of the control points
xnþ1

I can be summarized as follows:

Step 1: Set k :¼ 0 and make an initial guess for xnþ1
I , i.e. xð0ÞI as
xð0ÞI ¼ 2xn
I � xn�1

I :
Step 2:
� Solve Eq. (58) and update the viscosity lnþ1.
� Evaluate the forces with the shell location xnþ1=2

I ¼ ðxn
I þ xðkÞI Þ=2 as described in Section 3.2.

Step 3:
� Distribute the forces to the nearby Cartesian grid points using (49).
� Solve the Navier–Stokes equations using the projection method as described in Section 3.1.
� Compute the velocity at the control points, unþ1ðxðkÞI Þ by interpolating from the velocity at the surrounding grid

points using (57).

Step 4:
� Evaluate
gðxðkÞI Þ ¼ xðkÞI � xn
I � Dt unþ1=2 xn

I þ xðkÞI

2

 ! !
:

� If kgðkÞk < � then xnþ1
I ¼ xðkÞI and stop the iteration. Otherwise, update xðkþ1Þ

I using GMRES method. Set k :¼ kþ 1
and go to step 2.
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4. Numerical results

4.1. Inflation of a sphere

This example considers the inflation of a spherical incompressible shell loaded by an internal pressure p. The problem of
the inflation of a sphere tests the accuracy and convergence properties of the thin-shell model under conditions of large
membrane deformations. The spherical shell is subjected to a prescribed increase in radius. A closed-form analytical solution
[8,16,27,29] for the internal pressure at equilibrium is given as
p ¼
�h

Rc2

dW
dc

; ð70Þ
where c ¼ R=R is the radial stretch ratio, R and R are the radius of the undeformed and deformed middle surfaces of the shell,
respectively and W is the strain energy function. For the Mooney–Rivlin material with the strain energy function (22), the
relation between the radial stretch ratio c and the internal pressure p follows from (70) as
p ¼ 4�h
Rc7
ðc6 � 1Þðc1 þ c2c2Þ; ð71Þ
where c1 and c2 are the material constants. We performed simulations for the shell with undeformed radius R ¼ 1 and thick-
ness �h ¼ 0:02. The Mooney–Rivlin material constants c1; c2 are set to 20 and 10, respectively. We vary the radial stretch ratio
c from 1 to 5 and compute the average pressure loads on the shell. Calculations are performed with three meshes containing
128, 512 and 2048 elements, respectively. Fig. 1 shows the exact solution and the three numerical solutions. Good agreement
between exact and numerical solutions and the general trend towards convergence can be observed in this figure.

4.2. Thin-shell capsule in simple shear flow

The present method is used to study the deformation of capsules enclosed by thin shells with spherical, spheroidal and
biconcave unstressed shapes in simple shear flow given by the velocity u ¼ ð _cz;0;0Þ, where _c is the shear rate. Simulations
are performed over a wide range of dimensionless shear rate and for a broad range of the ratio of the internal to surrounding
fluid viscosities. For a capsule of volume V, the dimensionless shear rate which expresses the ratio of external viscous stres-
ses to restoring elastic tensions is defined as
G ¼ le
_ca

E�h
; ð72Þ
where a is the radius of an isovolumic sphere, a ¼ ð3V=4pÞ1=3. The Reynolds number is defined as
Re ¼ q _ca2

le
; ð73Þ
where q is the density of the fluid. The radius a is chosen to be sufficiently small so that the Reynolds number of the flow is
effectively zero; in this work, it is set at Re ¼ 0:01 unless stated otherwise. Hence, the inertia effect is negligible and the re-
sults can be compared with those obtained by the linear theory [4] or the BEM [32,33]. The center of the capsule is placed at
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Fig. 1. Inflation of a Mooney–Rivlin sphere.
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Fig. 2. Grid refinement study of (a) the deformation parameter and (b) inclination angle for spherical capsule with k ¼ 1 and G ¼ 0:2.
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the center of a cube of side 10a. This computational domain is large enough so that boundary effects are not important
[24,43]. Boundary conditions for the velocity are of the Dirichlet type at z ¼ 	5a and periodic at other boundaries. In the
subsequent simulations, the initial capsule shape is taken to be a strain free state and the undeformed thickness of the en-
closed shell is chosen to be 0.02a.

4.2.1. Spherical capsules
In this example, we study the deformation of a spherical neo-Hookean thin shell in the shear flow. To validate the present

method, we perform grid convergence study and compare the results with the linear theory [4] and those obtained numer-
ically [21,33,43]. The deformation of the membrane is described by the Taylor shape parameter Dxz ¼ ðL� BÞ=ðLþ BÞ, where L
and B are the maximum and minimum radial distances from the origin in the plane of shear, respectively. In practice, we find
it more suitable to use the deformation parameter of an ellipsoid with the same inertia tensor as described in [24,33]. Grid
refinement study is carried out for G ¼ 0:2 and k ¼ 1. We started the grid refinement study with a 64� 64� 64 fluid grid and
a coarse shell surface discretization with a quadratic triangular mesh of 4098 nodes and 2048 elements. We then use
96� 96� 96 and 128� 128� 128 fluid grids with finer shell surface meshes of 10242 nodes, 5120 elements and 16,386
nodes, 8192 elements, respectively. Finally, the simulation is performed on the 160� 160� 160 fluid grid with the finest
surface mesh of 40,962 nodes and 20,480 elements. The results for the deformation parameter, Dxz, and inclination angle,
h, at different grid resolutions are shown in Fig. 2. The results show that the solutions converge with increasing grid reso-
lution and the 96� 96� 96 fluid grid and the surface mesh of 10,242 nodes and 5120 elements is sufficient to capture accu-
rately the deformation parameters of the capsule. This fluid grid and surface mesh are used in the subsequent simulations
unless stated otherwise.



Fig. 3. The time evolutions of (a) the deformation parameter and (b) inclination angle for spherical capsule with k ¼ 1 and G ¼ 0:1 at a sequence of Reynolds
numbers.

Fig. 4. The time evolutions of (a) the deformation parameter and (b) inclination angle for spherical capsule with k ¼ 1 at a sequence of dimensionless shear
rates G. The solid lines are the results obtained by the present algorithm, the dashed lines are obtained with the linear theory. The circles and diamonds are
found using the BEM [33,21] and the squares are obtained using IB-LBM [43].
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Fig. 5. The time evolutions of (a) the deformation parameter and (b) inclination angle for spherical capsule with k ¼ 0:2 at a sequence of dimensionless
shear rates G.

Fig. 6. The time evolutions of (a) the deformation parameter and (b) inclination angle for spherical capsule with k ¼ 5 at a sequence of dimensionless shear
rates G.
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Next, we study the inertia effect on the capsule deformation by varying Reynolds number from 10�4 to 10. It can be seen
from Fig. 3 that increasing Reynolds number leads to greater deformation and decreased alignment with the undisturbed
flow. At Re 6 0:1, the deformation curves are almost identical which suggests that the inertia effect can be negligible. At
moderate Reynolds number, Re ¼ 10, the capsule oscillates before reaching a steady state. Similar transient process was ob-
served for elastic capsule in [43].

Next, we study the deformation of spherical capsules over a range of dimensionless shear rate G and viscosity ratio k. The
time evolutions of the Taylor shape parameter, Dxz, and the inclination angle, h, with several values of the dimensionless
parameter G at k ¼ 1 are shown in Fig. 4. There is excellent agreement with the linear theory [4] at small G ðG < 0:025Þ since
the deformations are small. As the value of G increases the deformations increase and the linear theory does not apply. For
larger values of G, we compare our results with those obtained using the BEM [21,33] and the immersed boundary lattice
Boltzmann method (IB-LBM) [43] and Fig. 4 shows good agreement between the present method and other numerical meth-
ods. Figs. 5 and 6 show the deformation parameter, Dxz, and the inclination angle, h, at k ¼ 0:2 and k ¼ 5, respectively. In both
cases, the initial spherical capsules deform to nearly ellipsoidal steady shapes which are inclined with respect to the x-axis at
well-defined angles, and the capsule membranes rotate around the interior fluid in a tank-treading mode [33]. As can be seen
from Figs. 4–6, the capsules elongate and tend to align with the streamlines of the unperturbed flow when the value of G is
increased at constant k. And as k increases at constant G, it leads to greater alignment of the capsule with the undisturbed
flow. We note that the capsule volume change is within 0.3% during the simulations for all the values of G and k.

Finally, we study the deformation of spherical capsules with Skalak’s strain energy function (35). Simulations are carried
out for three values of the ratio between the area dilation modulus and the shear elastic modulus, c11 ¼ 1;10;50 at different



Fig. 7. (a) The deformation parameter and (b) inclination angle for spherical capsule governed by Skalak strain energy function (35) with the three values of
c11 at k ¼ 1. The results are compared with those obtained using the BEM [21].
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dimensionless shear rates G. Similar to the neo-Hookean membrane, the capsule deforms to a steady state and the mem-
brane rotates around the interior fluid in a tank-treading mode. In Fig. 7, we plot the deformation parameter, Dxz, and the
inclination angle, h at steady state against the dimensionless shear rate G. The results are compared with those obtained
using the BEM [21] and satisfactory agreements are observed in Fig. 7.

4.2.2. Oblate spherical capsules
In the preceding section, spherical capsules have been considered because of their ideal geometry which allows analytical

methods to predict deformations histories. In practice, liquid capsules deviate from perfect spheres and may have a bicon-
cave disk shape. Here, we simulate capsules whose initial shapes are oblate spheroids with different aspect ratios and bicon-
cave disks. To describe an oblate spheroid with aspect ratio of b=a, we use the mapping xobl ¼ Rx; yobl ¼ Ry; zobl ¼ ðb=aÞRz
where (x,y,z) is the coordinate of a point on the unit sphere and the radius R is adjusted to preserve the volume. Similarly,
to describe the biconcave disk shape assumed by red-blood cells at rest, we use the mapping [14]
xrbc ¼ Rx; yrbc ¼ Ry;

zrbc ¼ 	0:5R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

ðC0 þ C1r2 þ C2r4Þ;
ð74Þ
where r2 ¼ x2 þ y2
6 1; C0 ¼ 0:2072; C1 ¼ 2:0026, and C2 ¼ �1:1228. Once again, the strain energy function for the neo-

Hookean material is employed.
First, we consider an oblate spheroid of aspect ratio b=a ¼ 0:9, inclined at the angle h0 ¼ p=4 with respect to the stream-

lines of the unperturbed flow. These parameters were chosen to compare the evolution of the deformation parameter with



Fig. 8. Comparison of (a) the deformation parameter and (b) the inclination angle for oblate spheroidal capsules with b=a ¼ 0:9 and k ¼ 1 at different
dimensionless shear rates G with those obtained by the BEM [33] and LBM [43].

Fig. 9. The time evolutions of (a) the deformation parameter and (b) inclination angle for oblate spheroidal capsules with b=a ¼ 0:9 and k ¼ 1 at different
dimensionless shear rates G.
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Fig. 11. The time evolutions of the inclination angle for oblate spheroidal capsules with b=a ¼ 0:9 and k ¼ 1 at (a) G ¼ 0:0072 and (b) G ¼ 0:0074.

Fig. 12. Typical plots of inclination angle h vs. phase angle d for oblate spheroidal capsules with b=a ¼ 0:9 and k ¼ 1. (a) typical tank-treading motion; (b)
typical tumbling motion; (c,d) typical motions for tumbling to swinging transition.
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those calculate using the BEM [33] and the lattice Boltzmann method (LBM) [43] under the same conditions. The deforma-
tion parameter Dxz and the inclination angle h are calculated for three shear rates G ¼ 0:05; 0:1 and 0.2 at k ¼ 1 and are
shown in Fig. 8 as solid lines. Unlike the spherical capsule, the oblate spheroid capsule undergoes oscillations in the defor-
mation parameter and the inclination angle. This has also been observed in [23,33,43]. Fig. 8 shows good agreement between



Fig. 13. The time evolutions of (a) the deformation parameter and (b) inclination angle for oblate spheroidal and biconcave capsules with k ¼ 1 and G ¼ 0:2.
our results and those obtained in [43]. The BEM [33] predicts smaller deformations than the present method and the LBM
[43]. And as reported in [23], we can conclude that the deformation parameters obtained by the present thin-shell model
agree well with those obtained using the zero-thickness shell description of the membrane behavior. Since the oblate spher-
oid with b=a ¼ 0:9 is a nearly spherical capsule, its deformation trends are similar to those of the spherical capsule. An in-
crease in the shear rate G leads to greater deformation and increased alignment with the undisturbed flow.

Fig. 9 shows the time evolutions of the deformation parameter and the inclination angle for oblate spheroidal capsules
with b=a ¼ 0:9 and k ¼ 1 at a range of smaller dimensionless shear rates G. It can be observed from Figs. 8 and 9 that at large
shear rate ðG P 0:01Þ, the capsule undergoes periodic oscillations in both the deformation parameter and inclination angle
superimposed on the tank-treading motion. This mode of motion has also been observed in both theory [1,26,41] and sim-
ulations [18,28,44] and is referred as swinging motion. As G is decreased, the amplitude of the oscillations increases espe-
cially noticeable in the inclination angle in Fig. 9(b). As G is decreased further, e.g G ¼ 0:005, the capsule’s motion has
changed from swinging to tumbling mode in which the capsule undergoes continuous rotation. Additional simulations were
performed for k ¼ 10 to study the effect of viscosity ratio on the deformation and inclination. Fig. 10 suggests that an in-
crease in k results in lower deformation but amplifies the oscillation. The change in the capsule’s motion from tumbling
to swinging can be observed from Fig. 10(b) as G is raised.

We also observe a transient dynamics from tumbling to tank-treading as shown in Fig. 11 for the oblate spheroidal cap-
sules with b=a ¼ 0:9 and k ¼ 1 at G ¼ 0:0072 and G ¼ 0:0074. To quantify the oscillations in the swinging, tumbling and tran-
sient states we follow [18] to define a phase angle as
dðtÞ ¼ aðtÞ � hðtÞ � ðað0Þ � hð0ÞÞ; ð75Þ



Fig. 15. Shapes of spheroid capsule with b=a ¼ 0:3 at (a) _ct ¼ 5, (b) _ct ¼ 20 and biconcave capsule at (c) _ct ¼ 5 and (d) _ct ¼ 20 with k ¼ 1 and G ¼ 0:05.

Fig. 16. The time evolutions of the inclination angle for oblate spheroidal and biconcave capsules with k ¼ 5 and (a) G ¼ 0:2, (b) G ¼ 0:1.
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where aðtÞ is the tank-treading angle of a marker point on the membrane compared to the undisturbed flow direction. To
make dðtÞ a continuous function of time, we manually subtract p from aðtÞ or hðtÞ after their values make a half rotation.
Fig. 12 shows typical plots of inclination angle h vs. phase angle d for oblate spheroidal capsules with b=a ¼ 0:9 and k ¼ 1
at different states of motion. The arrows indicate the direction of time in the plot. In the swinging motion the inclination
angle h undergoes periodic oscillations while the phase angle d changes monotonically with time as shown in Fig. 12(a).
In the tumbling motion, the inclination angle h changes monotonically with time while the phase angle d undergoes periodic
oscillations around a stationary value as shown in Fig. 12(b). Fig. 12(c) and (d) shows the behaviors of h and d at the tran-
sition from a tumbling motion to a swinging motion.

Next, we consider spheroidal capsules with more oblate unstressed shape of aspect ratios b=a ¼ 0:5 and 0.3, inclined at
the angle h ¼ p=4 with respect to the streamlines of the unperturbed flow. In addition, we consider capsules with unstressed
shapes of biconcave disks. The deformation parameter Dxz and inclination angle h are calculated for oblate capsules with
k ¼ 1 and G ¼ 0:2 and are shown in Fig. 13. Fig. 14 shows the evolution of Dxz and h at smaller dimensionless shear rate



Fig. 17. Shapes of the neo-Hookean biconcave disk with k ¼ 10 and G ¼ 0:2 during tumbling motion.

Fig. 18. Shapes of the Skalak biconcave disk with k ¼ 5 and G ¼ 0:2 during tumbling motion.
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G ¼ 0:05. In both cases, the capsules rotate around the internal fluid in a tank–treading mode. For the spheroid with
b=a ¼ 0:5, sustained oscillations in Dxz and h with larger amplitude at smaller G can be observed. Oscillations in Dxz and h
are also seen for the spheroidal capsule with b=a ¼ 0:3 and the biconcave disk. The behavior of the spheroid with
b=a ¼ 0:3 is similar to that of the biconcave disk throughout the course of the simulation owing to the similarity in shape
and surface area of both capsules. In [33], numerical instabilities due to the grid degradation limited the extent of the sim-
ulations for the spheroid with b=a ¼ 0:3 and the biconcave disk. With the present thin-shell model, we are able to increase
the duration of the simulations further. However, the simulations capture the buckling instabilities at low dimensionless
shear rate G due to the compressive stress [21,24] as seen in Fig. 15.

Next, we perform additional simulations for k ¼ 5 with G ¼ 0:2 and G ¼ 0:1. The temporal evolution profiles for the incli-
nation angle are shown in Fig. 16. At G ¼ 0:2, we see little change in the character of the response for the spheroid with
b=a ¼ 0:9 but significant differences in the behavior of the more–oblate spheroids and biconcave disk. The spheroid
with b=a ¼ 0:5 still undergoes swinging motion but the oscillation amplitudes are larger at k ¼ 5 than at k ¼ 1. For
the b=a ¼ 0:3 spheroid and the biconcave disk, the inclination profiles in [33] suggest continuous rotation but there is no
clear evidence because of the limited extend of the simulation. In the present study, with longer simulation time we can
observe that the inclination angles drop below zero before return to positive angles and the capsules still undergo swing
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motion. However, at lower dimensionless shear rate G ¼ 0:1 the biconcave disk rotates continuously in the tumbling mode
and the transient dynamics from tumbling to swinging can be observed for the b=a ¼ 0:3 spheroid as shown in Fig. 16(b).
Additional simulations were performed for the biconcave disk with k ¼ 10 deforming at G ¼ 0:2. The shapes of the biconcave
disk at different times are show in Fig. 17. These shapes indicate that the biconcave capsule rotates continuously in the clock-
wise direction and that with increasing k the flow triggers the tumbling motion at a larger dimensionless shear rate.

Finally, we perform simulations for the biconcave disk with Skalak’s strain energy function at G ¼ 0:2 and k ¼ 5. The ratio
between the area dilation modulus and the shear elastic modulus, c11, is chosen to be 50, which is large enough to maintain
the constant area of the biconcave capsule. The simulation results show that the capsule surface area and volume changes
are within 0.8% and 0.2%, respectively and the capsule undergoes tumbling motion. Fig. 18 shows the snapshots of the bicon-
cave disk during tumbling motion.
5. Conclusions

In this paper, we have presented a thin-shell model to study the deformations of liquid capsules enclosed by elastic thin
shells in the shear flow. The thin-shell model is used in conjunction with the implicit immersed boundary method for the
incompressible Navier–Stokes equations which enable us to handle three-dimensional fluid–structure interactions. The
present method was validated by studying the inflation of a spherical shell and the deformations of spherical and oblate
spheroidal capsules. The problem of the inflation of a sphere tests the accuracy and convergence properties of the thin-shell
model under conditions of large membrane deformations. Good agreement between exact and numerical solutions and the
general trend towards convergence have been demonstrated in this example. For the spherical capsule in shear flow, com-
putations are performed to reproduce the deformation parameters and inclination angles at different dimensionless shear
rates and material properties. Our numerical results show excellent agreement with published theoretical and numerical
results. Simulations have also been performed for the oblate spheroidal and biconcave capsules over a wide range of
dimensionless shear rates and viscosity ratios with different strain energy functions. Different types of motion such as
tank-treading, tumbling and transition from tumbling to tank-treading have been observed for oblate spheroidal capsules
depending on the shear rate and viscosity ratio. We have also quantified the oscillations in the tank-treading, tumbling
and transient motions by defining the phase angle.

The present method for computing the forces based on the thin-shell model significantly improves our ability to simulate
capsules with hyperelastic membranes, enabling us to study large deformations of capsules with different unstressed shapes.
The improvements in the numerical method also allow us to overcome numerical instability resulting from the degradation
of the grid. The method can be improved further by improving the smoothness of the surface. For the current unstructured
mesh, it is not possible to ensure C1 continuity across finite elements since the finite elements are endowed with purely local
polynomial shape functions. To ensure a continuous description of the high-order geometrical quantities such as curvature,
one may use subdivision surfaces for generating smooth surfaces. This is a topic of a current investigation.
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